

CLASS : XIth DATE :

SUBJECT : MATHS DPP NO. :3

Topic :-MATHEMATICAL REASONING

1.	The contrapositive of $(\sim p \land q) \rightarrow \sim r$ is				
	a) $(p \land q) \rightarrow r$	b) $(p \lor q) \rightarrow r$	c) $r \rightarrow (p \lor \sim q)$	d) None of these	
2.	$\sim p \wedge q$ is logically equivalent to				
	a) <i>p→q</i>	b) <i>q→p</i>	c) ~(<i>p</i> → <i>q</i>)	d) $\sim (q \rightarrow p)$	
3.	$p \wedge (q \wedge r)$ is logically equivalent to				
	a) $p \lor (q \land r)$	b) $(p \land q) \land r$	c) (p∨q)∨r	d) $p \rightarrow (q \wedge r)$	
4. q = The "It i	If $p =$ He is intellige He is strong en, symbolic form of stat s wrong that he is intell	ent rement igent or strong," is			
	a) ~ <i>p</i> ∨~ <i>p</i>	b)~(<i>p</i> ∧ <i>q</i>)	c) ~(<i>p</i> ∨ <i>q</i>)	d) <i>p</i> ∨~ <i>q</i>	
5.	Which of the following a) $(p \land q) \land (\sim (p \lor q))$	is a contradiction? b)p∨(~p∧q)	c) $(p \rightarrow q) \rightarrow p$	d) None of these	
6.	The statement <i>p∨q</i> is a) A tautology	b)A contradiction	c) Contingency	d) None of these	
7.	When does the value of a) <i>p</i> is <i>T</i> , <i>q</i> is <i>F</i>	f the statement $p(\land r) \Leftrightarrow (b) p$ is, r is F	$(r \land q)$ become false? c) p is F, q is F and r is F d) None of these		
8. a ta	$(p \land \sim q) \land (\sim p \land q)$ is a) a tautology utology not a contradict	b) a contradiction tion	c) tautology and contra	adiction d) neither	
9.	If <i>p</i> always speaks again a) A tautology	nst <i>q</i> , then <i>p⇒p∨~q</i> is b) Contradiction	c) Contingency	d) None of these	
10.	If p , q , r have truth value a) $(p \rightarrow q) \land r$	ties T, F, T respectively, w b) $(p \rightarrow q) \land \sim r$	which of the following is the c) $(p \land q) \land (p \lor r)$	true? d) q →(p ∧ r)	

11.	Dual of $(x' \lor y') = x \land y$ is					
	a) $(x' \lor y') = x \lor y$	b) $(x \land y) = x \lor y$	c) $(x' \land y')' = x \land y$	d) None of the above		
12. d)	<i>p</i> ∨ <i>q</i> is true when a) Both <i>p</i> and <i>q</i> are true All of these	eb) <i>p</i> is true and <i>q</i> is fals	se c)	<i>p</i> is false and <i>q</i> is true		
13.	Which of the following propositions is a tautology? a) $(\sim p \lor \sim q) \lor (p \lor \sim q)$ b) $(\sim p \lor \sim q) \land (p \lor \sim q)$ c) $\sim p \land (\sim p \lor \sim q)$ d) $\sim q \land (\sim p \lor \sim q)$					
14.	For any two statements pand q , $\sim (p \lor q) \lor (\sim p \land q)$ is logically equivalent to					
	a) <i>p</i>	b)~p	c) q	d)~q		
15.	Identify the false statement a) $\sim [p \lor (\sim q)] \equiv (\sim p) \land q$ c) $[p \land q] \land (\sim p)$ is a contradiction		b) $[p \lor q] \lor (\sim p)$ is a tautology d) $\sim (p \lor q) \equiv (\sim p) \lor (\sim q)$			
16.	~[<i>p</i> ↔q]is a) Tautology	b)Contradiction	c) neither (a) nor (b)	d)either (a) or (b)		
17.	Let truth values of <i>p</i> be a) T	<i>F</i> and <i>q</i> be <i>T</i> . Then, trut b) F	h value of ~(~ <i>p</i> ∨ <i>q</i>) is c) Either T or F	d)Neither T nor F		
18.	Which of the following statements is a tautology?					
	a) (~q∧p)∧q	b)(~q $\wedge p$) \wedge ($p\wedge \sim p$)	c) (~q∧p)∨(p∨~p)	d) $(p \land q) \land (\sim (p \land q))$		
19. pro	Consider the proposition position is a) If we do not control populat	on : "If we control popul population growth, we p	ation growth, we prospe prosper	er". Negative of this		
	c) We control population but we do not prosper d) We do not control population but we prosper					

20. Which of the following is not a proposition?

a) 3 is prime	b) $\sqrt{2}$ is irrational
c) Mathematics is interesting	d) 5 is an even integer